GeoNQVA

Nova Scotia Coordinate Referencing System

June 2024 Update

Lee Chaulk, P.Eng., NSLS, CLS Senior Program Administration Officer

Topics

- 1. NSHPN Adjustments
- 2. NSACS Updates
- 3. Adopt a Monument
- 4. Coordinate Referencing Viewer
- 5. NATRF2022
- 6. NRTK Best Practices
- 7. Vendor Demonstrations/Details

NSHPN Adjustments

- Used to upgrade former NSCCS (ATS77) monuments to NSHPN (NAD83(CSRS)2010.0 v6)
- Spring 2024 adjustment is ongoing and data has been submitted for update of Coordinate Reverencing Viewer.
- Spring 2024 adjustment should add approximately 100+ new NSHPNs to the existing network.
- Observations came primarily from municipal and government surveyors

NSACS Updates

- Completion of procurement for replacement of geodetic grade GNSS receivers for NSACS. Winning company was Septentrio for receivers and antennas.
- Purchase of new GNSS management software. GEO++ was the winning company to provide software.
 - Will allow GNS to stream data to service providers.
 - Potential to stream our own NRTK corrections to government users.
 - Will allow all service providers to receive 4 constellation data.
- Analysis will be conducted during that time to see if any areas of the province would benefit from infill with new NSACS sites.

NSACS Updates (con't)

- 11 New GNSS receivers (11X Septentrio Polar Rx5 and 3X Septentrio Verachoke antennas) have been purchased in Spring of 2024. Can receive all four constellations (GPS, GLONASS, Galileo, BeiDou) and will be installed during the yearly maintenance campaign. Locations will be determined after consultation with service providers.
- GATZ ACS will be moved in the next coming months due to the existing school being replaced/moved.

Adopt a Monument

- Crowdsourcing initiative that allows qualified surveyors to maintain NSHPN's around the province
- Surveyors are required to provide observations (2 per year), maintain monument and surrounding area and provide photos and condition updates to the Coordinate Referencing Viewer
- Data submissions can still be provided to upgrade AT\$77 coordinates at NSCCS's to NAD83(CSRS)2010.0 v6 to upgrade to NSHPN status
 - Require 3 observations sets at a minimum of 10 minutes (1 second update rate) with NRTK (1 submission must be using different surveyor, equipment and day).
 - Photos need to be provided (equipment setup, general site, monument condition)
 - Outside of NRTK, static observation sets must be minimum of 30 minutes at 1 second update rate.

Adopt a Monument (cont.)

CompassView and Camera Angle Apps

NOVASCOTIA

Adopt a Monument (cont.)

Mobile Coordinate Referencing Viewer

- Released in May of 2023 and now provides users the ability to use Apple and Android platforms
- Now provides users the ability to filter more types of monuments to show active and destroyed monuments
- User can now provide updates for damaged and destroyed monuments through their mobile devices
 - https://nsgi.novascotia.ca/nscrs-viewer

NATRF2022 – What is NATRF2022?

- Current federally adopted system in Canada is NAD83(CSRS)2010.0 v7 and is offset from CoM by ~2.2m
- NATRF2022 will aligned to ITRF2020 at epoch 2020.0 and will be truly geocentric
- Fully compatible with GNSS observations and orbits
- Differences between NAD83(CSRS) and NATRF2022 in NS will be ~1.3m horizontally and 1.1m vertically (ellipsoid)

NATRF2022 – What is NATRF2022?

- Like NAD83, NATRF2022 will drift away from ITRF2020 to the motion of the North American Plate
- Dynamic reference system that will be similar to NAD83(CSRS) where coordinates change with time
- Intra-Frame Deformation Model (IFDM) will allow coordinates to be calculated at different epochs to account for changes in time. This in essence replaces velocity models.
- IFDM is expected to account for more complex dynamic motions (e.g. position offsets, seasonal signals, post seismic deformations)

NATRF2022 – Why switch to NATRF2022?

- NATRF2022 is geocentric and will remove ~2.2m offset in comparison to WGS84/ITRF with NAD83
- Will be fully compatible with GNSS technology in a market that relies heavily on GNSS from both expert and mainstream users
- NATRF2022 better supports modern space based positioning solutions (e.g. commercial RTK, RTN, and RTPPP)
- Serves as an economic driver for industry in the geospatial digital economy by having a shared reference system
- No more support from federal level (CGS)

NATRF2022 – When is it being implemented?

- Canadian Geodetic Survey (CGS) has committed to adopting and implementing NATRF2022 in 2025 from a federal level
- Canadian Geodetic Reference System Committee (CGRSC) has supported the move to adopt NATRF2022 and is currently consulting with partners in all provinces
- Canadian Council on Geomatics (CCOG) has signed off on supporting the move to NATRF2022
- Provinces will have tools from CGS to begin implementing NATRF2022 in 2025

1. Nova Scotia Active Control Stations

 Quick adoption of NATRF2022 following NRCan adjustment

- Service Providers to follow NRCan recommendations
- Instant access to NATRF2022
- Ability to broadcast on legacy and NATRF2022

2. Re-observation and expansion of HPN

- Established process of re-observing HPN
- 1300 HPN
- Summer program
- ANSLS, GNS, COGS

Pros	Cons
Greater certainty in quality of HPN coordinates	Cost
Coordinates directly calculated in NATRF2022, no further adjustment needed	
HPN maintained and more accessible for QA/QC	

Estimated Cost : ~\$220,000

2. Re-observation and expansion of HPN

• 500 new HPN

Pros	Cons
More accessible HPN for QA/QC, differential GNSS and conventional instruments	Cost
Opportunity for better grid shift file for historic data sets	

Estimated Cost : ~\$110,000

3. Coordinate Transformation

Pros	Cons	r I	entre L
Straightforward task with minimal cost	Coordinates will only be accurate if the control monuments have not moved over time (true whether or not a transformation takes place, but a re-observation campaign would provide updated values)	Antro Antro Units Digital to shall be a to s	T. UVONTE

• New NRCan Tools (TRX) to support coordinate transformation

Estimated Cost : ~\$50,000

4. Grid Shift Files

Accuracy	Accessibility	Cost	Comments
Dependent upon distortion in original network	File is applicable to all modelled regions	Medium	Enables historic data sets to be migrated to NATRF2022

 NRCan/CGRSC is investigating Tools to support development of Grid Shift Files

- Best suited for GIS layers
- HPN observations also required

Estimated Cost : ~\$70,000

5. Readjustment of Passive Network

Accuracy	Accessibility	Cost	Comments
Dependent upon stability of passive network and quality of observations	Dependent upon density of existing monuments	Dependent upon familiarity with observations to be adjusted	Publishing distorted NATRF2022 coordinates should be avoided as it will cause distrust in the new system

Not recommended

- Accuracy based on past observations
- Better to use access to NSACS and NRTK network

NATRF 2022 – Nova Scotia Implementation

- Upgrades of NSACS receivers and antennas-2024-2029
- NRTK Correction software GEO++ (~end of 2024/25 fiscal year)
- NATRF2022 NSACS coordinates as provided by NRCAN ~2025
- NATRF2022 access as soon as NSACS coordinates are updated
 Staged roll out to full implementation
- HPN NATRF2022 as soon as NSACS coordinates are updated
- Tools for Coordinate Transformation NRCan

Nova Scotia NATRF2022 and CGVD2013(NAPGD22) Implementation Plan

NRTK Best Practices - Heights

NRTK Best Practices - Heights

- a) Mechanical reference plane b) Vertical phase centre offset for L1
 c) Vertical phase centre offset for L2
 d) Vertical offset

- e) Vertical height reading

NRTK Best Practices – Tilt RTK Sensors

MEASUREMENT PERFORMANCE &	ACCURACY.	
Time for RTK initialisation		Typically 4 s
Real-time kinematic (Compliant to ISO17123-8 standard	Single baseline Network RTK	Hz 8 mm + 1 ppm V 15 mm + 1 ppm Hz 8 mm + 0.5 ppm V 15 mm + 0.5 ppm
Real-time kinematic tilt compensate	d Not for static control points	Additional Hz uncertainty typically less than 5 mm + 0.4 mm/° tilt down to 30° tilt
RTK bridging	Up to 10 min bridging of RTK outages	Hz 2.5 cm V 5 cm
РРР	Initial convergence to full accuracy typically 10 min, Re-convergence < 1 min	Hz 2.5 cm V 5 cm
Post processing	Static (phase) with long observations Static and rapid static (phase)	Hz 3 mm + 0.1 ppm V 3.5 mm + 0.4 ppm Hz 3 mm + 0.5 ppm V 5 mm + 0.5 ppm
Code differential	DGNSS	Hz 25 cm V 50 cm
REAL TIME KINEMATIC SUR	VEYING	
Single Baseline <30 km		
	Horizontal	8 mm + 1 ppm RMS
	Vertical	15 mm + 1 ppm RMS
Network RTK ⁴		
	Horizontal	8 mm + 0.5 ppm RMS
	Vertical	15 mm + 0.5 ppm RMS
specified precisions ⁵		2 to 8 seconds
TRIMBLE INERTIAL PLATFOI	RM (TIP) TECHNOLOGY	
TIP Compensated Surveying ⁶		
1	Horizontal	RTK + 5 mm + 0.4 mm/° tilt (up to 30°) RMS
	Horizontal	RTX + 5 mm + 0.4 mm/° tilt (up to 30°) RMS
IMI Untegrity Monitor	Bias monitoring	Temperature age and shock

 10° of tilt can introduce ~9mm of error into your observation. In addition to the already 8mm/15mm + 0.5ppm.

NRTK Best Practices – Tilt RTK Sensors

NRTK Best Practices - Obstructions

NRTK Best Practices – Orbits

Orbit Error	Baseline Length	Baseline Error	Baseline Error
$2.5\mathrm{m}$	1 km	0.1 ppm	- mm
$2.5\mathrm{m}$	$10{ m km}$	0.1 ppm	$1\mathrm{mm}$
$2.5\mathrm{m}$	$100{ m km}$	0.1 ppm	$10\mathrm{mm}$
$2.5\mathrm{m}$	$1000\mathrm{km}$	0.1 ppm	$100\mathrm{mm}$
$0.05\mathrm{m}$	$1\mathrm{km}$	$0.002\mathrm{ppm}$	$-\mathrm{mm}$
$0.05\mathrm{m}$	$10\mathrm{km}$	$0.002\mathrm{ppm}$	$-\mathrm{mm}$
$0.05\mathrm{m}$	$100\mathrm{km}$	$0.002\mathrm{ppm}$	$0.2\mathrm{mm}$
$0.05\mathrm{m}$	$1000\mathrm{km}$	$0.002\mathrm{ppm}$	$2\mathrm{mm}$

Table 2.5.: Errors in baseline components due to orbit errors.

Table 2.6.: Estimated quality of orbits in 2015 (see http://www.igs.org/products).

Orbit Type	Quality	Delay of Availability	Available at
Broadcast Orbits CODE Ultra Rapid Orbits CODE Rapid Orbits CODE Final Orbits IGS Ultra Rapid Orbit (pred) IGS Ultra Rapid Orbit (obs) IGS Rapid Orbit IGS Final Orbit	$\begin{array}{c} \sim 1{\rm m} \\ < 5{\rm cm} \\ < 2.5{\rm cm} \\ < 2.5{\rm cm} \\ \sim 5{\rm cm} \\ < 3{\rm cm} \\ < 2.5{\rm cm} \\ < 2.5{\rm cm} \\ < 2.5{\rm cm} \end{array}$	Real-time Real-time After 12 hours After 5-11 days Real-time After 3 hours After 17 hours After ~13 days	Broadcast message CODE through FTP CODE through FTP CODE, IGS Data Centers IGS Data Centers IGS Data Centers IGS Data Centers IGS Data Centers IGS Data Centers

Dach, R., S. Lutz, P. Walser, P. Fridez (Eds); 2015: Bernese GNSS Software Version 5.2. User manual, Astronomical Institute, University of Bern, Bern Open Publishing. DOI: 10.7892/boris.72297; ISBN: 978-3-906813-05-9.

NRTK Best Practices – Orbits

Estimated Position for KM032560.230

	Latitude (+n)	Longitude (+e)	Ell. Height	
NAD83(CSRS) (2010.0)†	45° 43' 34.06393"	-63° 52' 47.98550"	-10.341 m	
SIG_PPP(95%)‡	0.006 m	0.004 m	0.021 m	
SIG_TOT(95%)‡	0.015 m	0.011 m	0.023 m	
A priori*	45° 43' 34.11191"	-63° 52' 48.09253"	-5.735 m	
Estimated – A priori	-1.481 m	2.314 m	-4.606 m	

Orthometric Height CGVD2013 (CGG2013a)	95% PPP Error Ellipse (mm) semi-major: 7 mm semi-minor: 5 mm	95% TOT Error Ellipse (mm) semi-major: 19 mm semi-minor: 13 mm	UTM (North) Zone 20
(2010.0)	semi-major azimuth: 20° 20' 28.49"	semi-major azimuth: 17° 3' 1.7"	
	15		
7.768 m	5		5063995.794 m (N) 431524.539 m (E)

(click for height reference information)

Scale Factors

0.99965764 (point) 0.99965927 (combined)

*(Coordinates from RINEX header used as a priori position) †(Epoch transformation using velocity grid NAD83v70VG (click for documentation))

National Aeronau Space Administr	utics and ation NASA's Archive of	Space Geode	esy Data	1		
Home About CDDIS	ata and Products	Techniques	Programs	Publications	Citing our Data	CDDIS Text Search
GNSS 🔻	GNSS Orbit Pr	oducts				
Data holdings Daily 30-second data	IGS analysis cent daily, or weekly, d and produces a c considered the off	ers provide sate epending upon t ombined produc icial IGS produc	llite orbit solution he data produce t, which is then ts.	ons to the CDDIS at. The IGS analys in turn archived a	using pre-determine is center coordinator it the CDDIS. These	d schedules, e.g., sub-daily, retrieves these solutions combination solutions are
Hourly 30-second data	IGS orbit combina	tion solutions ar	e available in t	hree forms: ultra-i	rapid, rapid, and final	The ultra-rapid product.
High-rate data	useful for real-tim solution includes	e and near real-	time application nd predicted sa	ns, is archived at ratellite orbits. The	egular intervals four rapid orbit combinati	times per day; the ultra-rapid on is a daily solution
Broadcast ephemeris data	available approxin quality IGS solutio of the solution we	nately 17 hours ins, consists of o ek. All orbit solut	after the end o faily orbit files, tion files utilize	f the previous UT generated on a w the Extended Sta	C day. The final, and eekly basis approxin ndard Product- 3 (SF	most consistent and highest nately 13 days after the end 23c) format.
MGEX	All operational IG	S GNSS product	ts (i.e., orbits, s	tation positions, E	OP, clock solutions)	are available in
Real-time data	subdirectories by their analysis met	GPS week. Solu hods and strated	tion summary gies and list pro	files are provided ocessing statistics	by the analysis center Descriptions of AC	ers in which they describe analysis procedures and
On-board receiver data	In 2009, 2013, an	d 2020 the ICS	initiated trappo	cassing compaign	and reprot	nd renzo3 respectively). The
Product holdings	IGS analysis cent repro1_from 1994	ers re-processed through 2012/2	the GNSS da	ta from the global from 1994 through	network of IGS station th 2022 for repro3) to	ons (from 1994 to 2007 for produce a fully consistent
Precise orbits	set of products ut	lizing the most r	ecent models a	and updated proce	essing strategies. The	ese reprocessed solutions
Clock products	subdirectories.	in the moonly ou	sum south y all un	and as sutiniou i	sion, in napro i, nep	ion' and repres
Reference frame	The starting direct	ory for these file	is is:			
Ionosphere/Troposphere	https://cddis.na	sa.gov/archive/g	inss/products			
	and for GLONAS	S-only solutions:				
MEaSUREs products	https://cddis.na	sa.gov/archive/g	inss/glonass			
Differential code bias	At the end of 2023	, the IGS made	the decision to	change the nam	e format going forwar	rd of many of its products
Real-time products	table can be found	on the followin	g page:	e IGS website whi	ch compares the old	and new name formats. The
GUARDIAN Near-Real- Time Ionospheric TEC	https://igs.org/p	roducts/#orbits	<u>clocks</u>			
JPL GDGPS products	Name Format	Since GPS W	leek 2238			
Reports	Append the follow	ing directory and	d file names to	the starting direct	ory:	
Related links	WWWW/AAA0	PPPTYP YYYY	DODHHMM I	EN SMP CNT.F	MT az	

http://ftp.aiub.unibe.ch/CODE MGEX/CODE/2024/

NRTK Best Practices – Antenna Calibration

*(Coordinates from RINEX header used as a priori position) †(Epoch transformation using velocity grid NAD83v70VG (click for documentation))

. 4	.4 M	ANTEX VERSION / SYS
8		PCV TYPE / REFANT
		ANA COMMENT
Genera	I mint for satellite antenna corrections:	COPPIENT
AI.	values in this file refer to an IGS-specific axis	COMMENT
cor	Vention which differs from manufacturer	COPPIENT
spe	citications for certain satellite types. The 165	COMMENT
cor	vention allows for a uniform description of the	COPPENT
spa	cecraft attitude for all satellites applying a yaw	- COMMENT
Ste	ering attitude control. Detailed definitions are	COPPENT
pro	vided in Hontenbruck et al. (2015).	COPPIENT
		COPPENT
UPS SI	tellite antenna corrections:	COPPENT
- 2.	ottsets:	COMMENT
+	satellite-specific	COPPENT
+	based on reprocessed (1994-2020) AC SINEX TILES	COPPIENT
+	weighted mean of eight ACS (COD, ESA, GF2, GRG, JF)	COPPENT
	Mul, NGS, ULK)	COPPIENT
+	solutions aligned to IIRF2020	COMMENT
+	trend-corrected to epoch 2015.0	COPPLENT
+	analyzed and complete by IGN	COMMENT
+	L1 and L2 set to the results for the ionosphere-fre	ee COMMENT
	linear complication	COPPIENT
+	block-specific mean values for historical satellit	es COMMENT
	(active prior to 1994)	COPPLENT
+	BLOCK IIIA SATEIIITES: disclosed PCO values	COMPLENT
	adjusted by one common offset in z direction (+69.	SS) COPPENT
	(dF5, 2021)	COPPENT
- pr	ase center variations:	COPPENT
+	DIOCK-Specific	COPPIENT
+	purely hadir-dependent (no azimuth-dependence)	COMPENT
+	maximum hadir angle: 14 degrees (Block 1), 17 degre	COMPLENT
	(BIOCK II/IIA/IIA-A/IIK-B/IIA-P/IIA/IIA)	COMPENT
+	adopted from 1gs05.atx	COPPENT
+	solutions aligned to 10000	COMMENT
+	unweighted mean of two Acs (Gr2, TOH)	COMPLENT
+	LI and L2 set to the results for the ionosphere-fre	ee COMMENT
	linear complication	COMMENT
+	block lif: adopted from igs08.atx, solutions aligne	ed COPPENT
	to 16508, unweighted mean of CODE and ESUC	COMMENT
+	BLUCK IIIA: Dased on estimations by ESA and CODE	COPPENT
+	extension for hadir angles beyond 14 degrees based	ON COMMENT
	LEO data from 2009 analyzed by CODE	COMMENT
- x.	and y-offsets:	COPPIENT
+	DIOCK-Specific (except for Block IIR)	COMMENT
+	satellite-specific corrections from pre-flight	COPPLENT
	calibrations for BLOCK IIR (Dilssner et al., 2016:	COMMENT
	Evaluating the pre-flight GPS Block IIR/IIR-M anter	nna COMMENT
	phase pattern measurements, IGS Workshop 2016)	COMMENT
		COMMENT
GLONAS	5 satellite antenna corrections:	COMMENT
	ottsets:	COMMENT
- Z-		
- 2.	satellite-specific	COMMENT

Trimble/Cansel/Can-Net

CONTACT LEGAL PRIVACY POLICY © COPYRIGHT 2024, TRIMBLE INC.

Trimble/Cansel/Can-Net

Mountpoint	Solution Type/Format	Supported GNSS Types	Receiver Type
Caneast <mark>vrs<mark>rtcm</mark></mark>	VRS, RTCM 3.1	GPS and GLONASS	All
CANEAST <mark>VRS<mark>RTCM</mark>32</mark>	VRS, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	All
Caneast <mark>vrs</mark> cmr <mark>p</mark>	VRS, CMR+	GPS and GLONASS	Trimble, various non
Caneast <mark>vrs</mark> cmr <mark>x</mark>	VRS, CMRx	GPS, GLONASS, Galileo, BeiDou*	Trimble, various non
CANEAST <mark>SSR</mark> RTCM	Single Base, RTCM 3.1	GPS and GLONASS	All
Caneast <mark>ssrrtcm</mark> 32	Single Base, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	All
Caneast <mark>ssr</mark> CmrP	Single Base, CMR+	GPS and GLONASS	Trimble, various non
CANEAST <mark>SSR</mark> CMR <mark>X</mark>	Single Base, CMRx	GPS, GLONASS, Galileo, BeiDou*	Trimble, various non

Leica SmartNet

Leica SmartNet

Mountpoint	Solution Type	Supported GNSS Types	Receiver Type
MSM_iMAX	imax, rtcm 3.2	GPS, GLONASS, Galileo, BeiDou*	Leica, various
MSM_NEAR	Single Base, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	Leica, various
MSM_ViRS	VRS, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	All
RTCM3_iMAX	imax, rtcm 3.1	GPS and GLONASS	Leica, various
RTCM3_MAX	MAX/MAC, RTCM 3.1	GPS and GLONASS	Leica, various
RTCM3_NEAR	Single Base, RTCM 3.1	GPS and GLONASS	All
RTCM_VIRS	VRS, RTCM 3.1	GPS and GLONASS	All

Brandtnet

Brandtnet

Mountpoint	Solution Type	Supported GNSS Types	Receiver Type
Topcon_RTCM3	VRS, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	All
VRS_Hemi_RTCM3	VRS, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	All
VRS_Leica_RTCM3	VRS, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	All
VRS_NovAtel_RTCM3	VRS, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	All
VRS_Trimble_CMRP	VRS, CMR+	GPS, GLONASS, Galileo, BeiDou*	Trimble, various
VRS_Trimble_RTCM3	VRS, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	All
SBL_Hemi_RTCM3	Single Base, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	All
SBL_Leica_RTCM3	Single Base, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	All
SBL_NovAtel_RTCM3	Single Base, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	All
SBL_Trimble_RTCM3	Single Base, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	All
SBL_Topcon_RTCM3	Single Base, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	All

SDF

SDF

Mountpoint	Solution Type	Supported GNSS Types	Receiver Type
NET_MSM	VRS, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	All
NETRTK_CMR+	VRS, CMR+	GPS, GLONASS, Galileo, BeiDou*	Trimble, various
NETRTK_RTCM3	VRS, RTCM 3.1	GPS and GLONASS	All
RTK_MSM	Single Base, RTCM 3.2	GPS, GLONASS, Galileo, BeiDou*	All
RTK_CMR+	Single Base, CMR+	GPS, GLONASS, Galileo, BeiDou*	Trimble, various
RTK_RTCM3	Single Base, RTCM 3.1	GPS and GLONASS	All

Other NRTK Service Providers

- NRCan RTK Compliance program provides users a way to confirm a set of standards is met.
- Current website shows what stations are compliant for each vendor and where.
- Further information can be found in 2019 Geomatica article
- BEWARE of cheap service providers who don't comply. You get what you pay for.

Thank you

