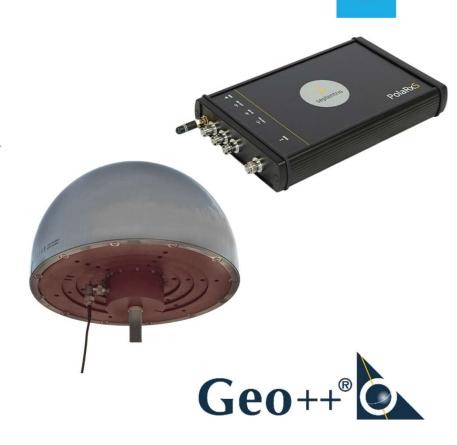
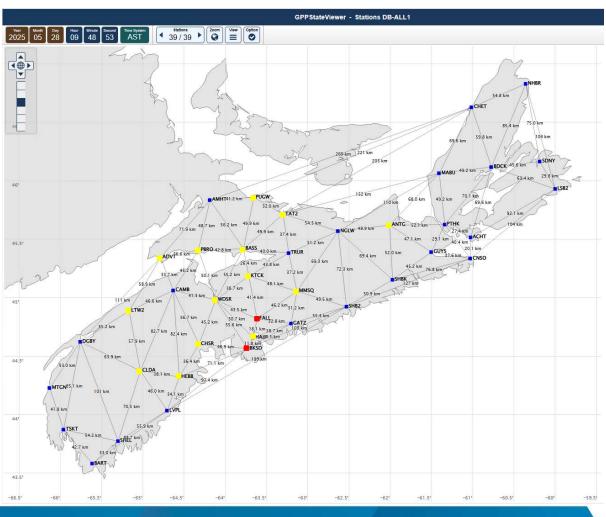


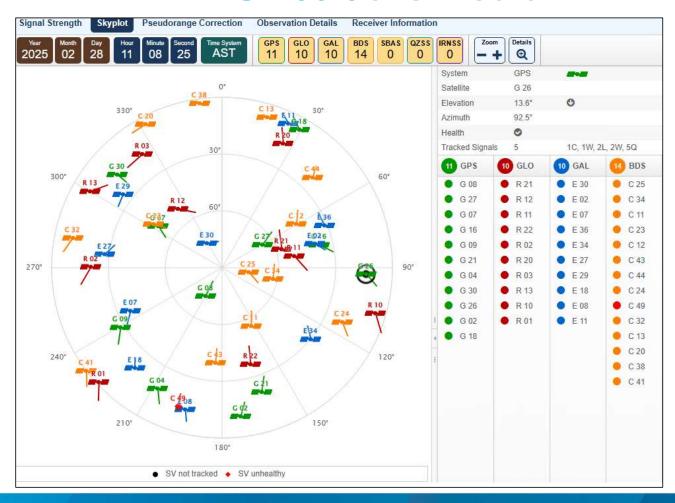
Nova Scotia Coordinate Referencing Program


Yearly Update

Lee Chaulk, P.Eng., NSLS, CLS Senior Program Administrator Officer

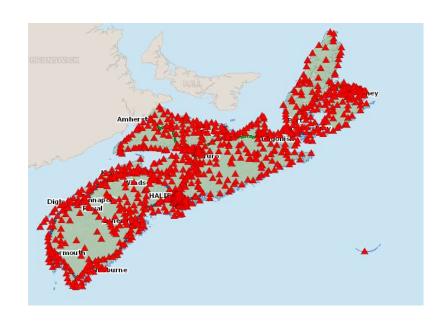
NSACS Updates


- Purchase of additional 6 Septentrio
 PolaRX5 receivers to make a total of 17 new receivers.
- Installation of 14 of the 17 new receivers at various locations throughout Nova Scotia.
- Spring 2025 adjustment should add approximately 120+ new NSHPNs to the existing network.
- All service providers are receiving full 4 constellation raw GNSS data at new NSACS sites.
- Upgrades to current modems to 5G capabilities.


Nova Scotia Active Control Stations

- 23X Trimble NetR9 (3.5 GNSS)
- 14X Septentrio PolaRX5 (4 GNSS)
- 2X Trimble Alloy (4 GNSS)
 - *2X Septentrio PolaRX5 Spares

GNSS Satellites at HALI


11 GPS 10 GLONASS 10 GALILEO 14 BeiDou

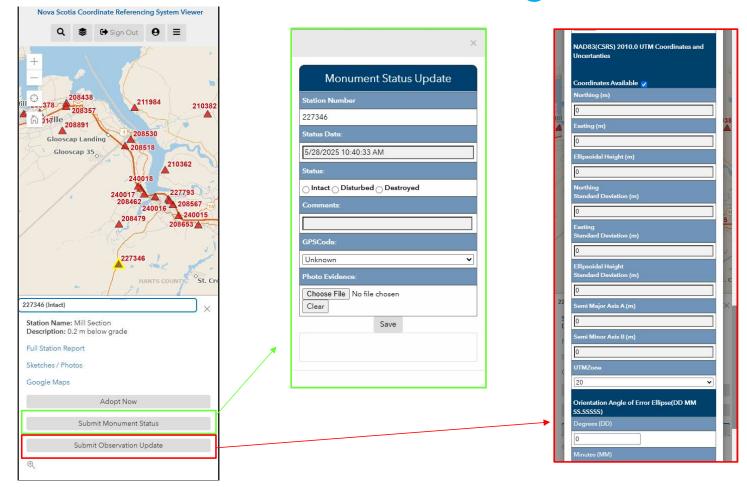
Total: 45 satellites

NSHPN Adjustments

- Used to upgrade former NSCCS (ATS77) monuments to NSHPN (NAD83(CSRS)2010.0 v6)
- Spring 2024 adjustment is the most recent and data has been updated on the Coordinate Reverencing Viewer.
- Spring 2025 adjustment should add approximately 100+ new NSHPNs to the existing network.
- Observations came primarily from municipal and government surveyors

Good Photos

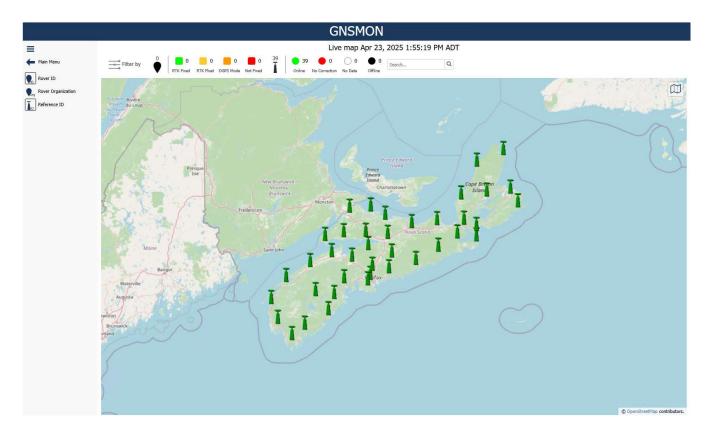



Bad Photos

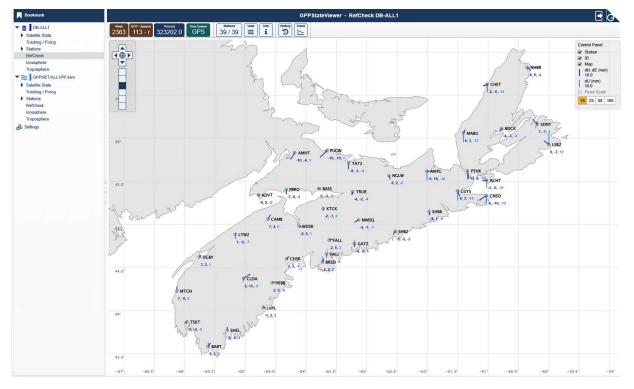
Mobile Coordinate Referencing Viewer

GATZ NSACS Move

GATZ NSACS Move (con't)

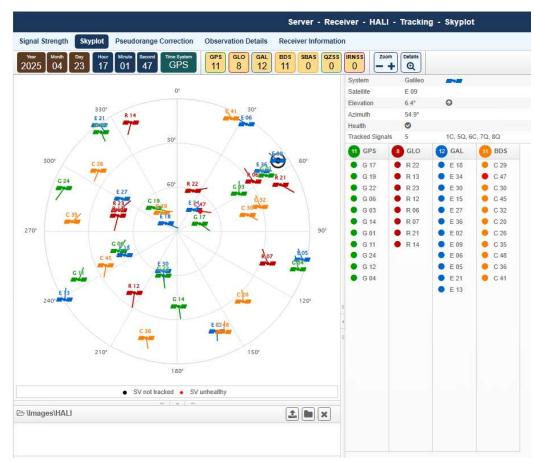


- Installation of equipment in June/July 2025
- Requires 3 months minimum GNSS observations
- Expecting to have online in late 2025


GNSMART Application (GEO++)

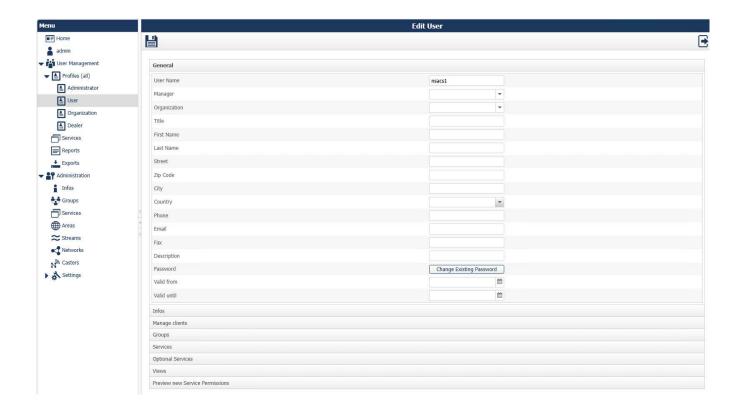
- Purchased via RFP at the end of the 2024 fiscal year
- Will allow us to end the contract with Trimble and administer the data and GNS subscriptions
- Allow GNS to intervene software when issues arrive and not rely on outside company to fix/repair
- Allow us to attract new subscribers of Raw GNSS data
- Unlimited GNS user accounts

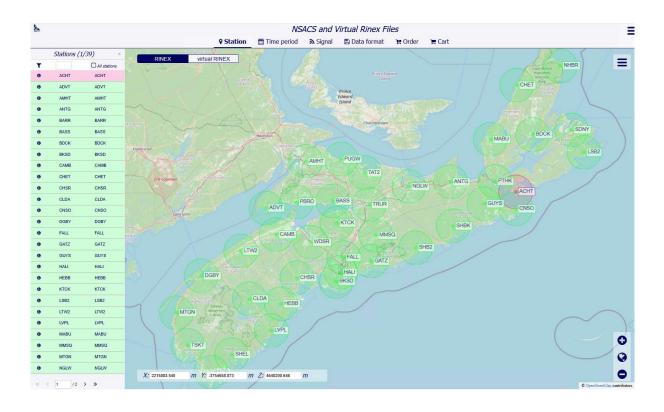
GNSMART Features



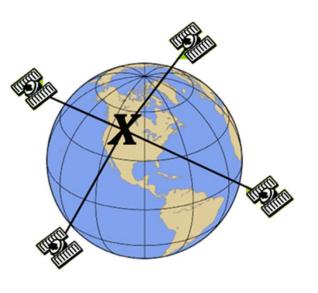
- Real time ability to monitor the overall quality and precision of each NSACS station
- Allows for future proof solution for all existing and future GNSS constellations to be integrated and not limited to specific equipment manufacturers.
- Allows for multipath reduction at each NSACS site based on seasonal changes (tree canopy) and building geometry.
- Corrects for antenna manufacturer bias, ionospheric/tropospheric changes, receiver manufacturer bias, ocean loading, etc.

GNSMART Functionality and Flexibility


- Currently able to receive and transmit raw GNSS data from 4 constellations: GPS, GLONASS, Galileo and BeiDou.
- Currently seeing on average 42 satellites per station and upwards of 50 at a time.
- Provides a Single Baseline, VRS or MAC solution to NRTK users depending on their preference
- Ability to run multiple mountpoints using different coordinate systems


NRTK Subscriptions

- Subscriptions will now be administered by GeoNova within the Government of Nova Scotia by submitting a help desk ticket.
- All existing subscriptions for government users will be replaced with new subscriptions for the new system/software.
- Will still require a username and password. Instructions will be provided for setup.
- Multiple RTCM mountpoints depending on what system the user requires.


GNSMART User Tools

- Users will have the ability to download RINEX data for NSACS sites for postprocessing kinematic or static baselines using user supplied software.
- VRS post processing solutions will be available via user portal where RINEX file is submitted and calculated position is provided as an output.
- Users will also be able to login to the GeoNova website to see the real time status of each NSACS.

Overview

CSRS-PPP was upgraded from v4 to v5 on **14 May 2025** This upgrade includes:

- Support for Galileo PPP-AR for E1/E5a observations collected beginning 27 November 2022 and processed with Rapid or Final products
- Observations collected prior to 27 November 2022 will continue to be processed with legacy Finals supporting only GPS and GLONASS
- The Ultra-rapid products will also continue to support only GPS and GLONASS

CSRS-PPP Modernization – Products

- Daily Rapid Processes
 - Use IGS combined GPS orbits
 - Run a GPS in-house clock and phase bias combination
 - Add CODE satellite attitudes and IGS combined ERP's
 - Merge CODE GLO/GAL orbits, clocks, and GAL biases
 - Estimate satellite clock Allan Deviations (for high-rate kin jobs)
 - Run PPP process on current and previous day to estimate day-boundary-discontinuities (DBD's)
- Weekly Final Processes
 - Run 7 daily Finals using process above
- Final Reprocessing
 - Ran daily Finals from November 2022 to current using process above

Notes:

- Modernized Rapid products are available ~17:45ut vs ~09:30ut for our current Bernese Rapids
- CODE Center for Orbit Determination in Europe (IGS Analysis Center which provides products for Bernese software users)

```
EMROMGARAP_20250810000_D1D_D1D_ADV.ADV.gz

EMROMGARAP_20250810000_D1D_D1D_DBD.BIA.gz

EMROMGARAP_20250810000_D1D_D1D_ERP.ERP.gz

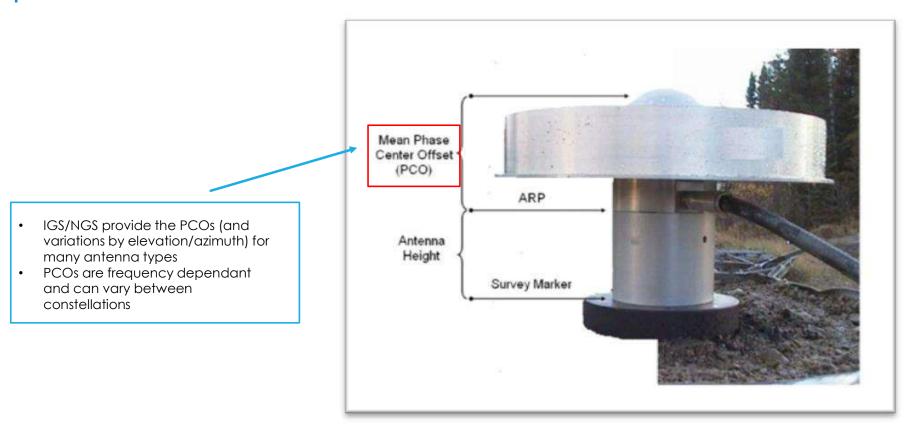
EMROMGARAP_20250810000_D1D_D1D_DSB.BIA.gz

EMROMGARAP_20250810000_D1D_D5M_DRB.SP3.gz

EMROMGARAP_20250810000_D1D_30S_ATT.OBX.gz

EMROMGARAP_20250810000_D1D_30S_CLK.CLK.gz
```


CSRS-PPP v5 updates


- New Rapid and Final product lines supporting Galileo
- PPP software updated from SPARK v4.16.0 to v5.11.0 enabling:
 - ► Estimation of relative antenna Phase Centre Offsets (PCO) and Phase Centre Variations (PCV) for antennas without full multi-GNSS absolute PCO/PCV calibrations

(see next slide for details on PCO calibrations)

- Fixing of day-boundary discontinuities in integer satellite clocks using an in-house estimated bias SINEX product
- ▶ Application of 2nd order Ionosphere correction with Rapid and Final products
- Correction for antennas not oriented north when the azimuthal offset is provided in the RINEX header
- Application of satellite attitude quaternions in ORBEX format
- Other service updates
 - Improved warning messages
 - Updated ANTEX handling to ensure consistent handling between PPP and products
 - Simplified post processing strategy
 - Improved reporting and documentation

GNSS antenna reference point vs antenna phase center

PDF report updates

CSRS-PPP 5.11.0 (2025-05-05)

ALGO00CAN_R_20251310000_01D_30S_MO.rnx ALGO CACS-GSD 883160 Algonquin Park ON Canada

Me St	23:59:30.00 ode atic	23:59:30 Product Type Rapid	
St	atic		
		Rapid	
Obcor	***		
Obser	vations		
GLONASS: C1 C2 L1 L2		Galileo: C1 C5 L1 L5	
ected Epochs	Fixed Ambigu	ities Estimation Steps	
0.00 %	93.77 %	30.00 sec	
APC to ARP		ARP to Marker	
REF PCO [^] : GPS GLONASS		H:0.100m / E:0.000m / N:0.000m	
	0.00 % APC REF PCO^: 0	ected Epochs Fixed Ambigu 0.00 % 93.77 % APC to ARP	

For signals without PCO calibrations, CSRS-PPP applies and/or atimates the PCOs relative to the REF PCO

Estimated Position for ALGO00CAN_R_20251310000_01D_30S_MO.rnx

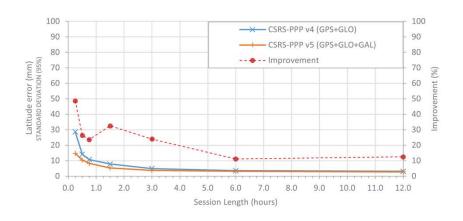
	Latitude (+n)	Longitude (+e)	Ell. Height
NAD83(CSRS) (2010.0)†	45° 57' 20.84718"	-78° 4' 16.90649"	201.975 m
SIG_PPP(95%)‡	0.002 m	0.002 m	0.007 m
SIG_TOT(95%)‡	0.013 m	0.009 m	0.011 m
A priori*	45° 57' 20.84716"	-78° 4' 16.90645"	201.992 m
Estimated - A priori	0.001 m	-0.001 m	-0.017 m

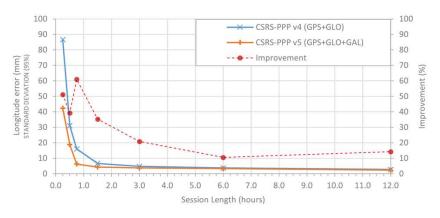
Updated Observations block

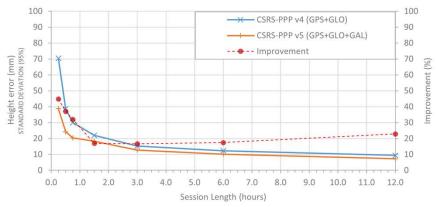
CSRS-PPP 5.11.0 (2025-05-05)

DRAO00CAN_R_20251310000_01D_30S_MO.rnx DRAO CACS-GSD 887006 Penticton BC Canada

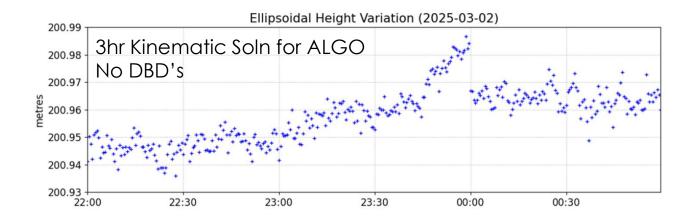
Data Start	Data End		Duration of Observations	
2025-05-11 00:00:00.00	2025-05-11 23:59:30.00		23:59:30	
Processing Time	Mode		Product Type	
20:00:37 UTC 2025/05/12	Static		Rapid	
	Obser	vations		
GPS: C1 C2 L1 L2	GLONASS:	C1 C2 L1 L2 Galileo : C1 C5 L1 L		
Elevation Cut-Off	Rejected Epochs	Fixed Ambigui	ities Estimation Steps	
7.5 degrees	0.00 %	98.65 %	30.00 sec	
Antenna Model	APC to ARP		ARP to Marker	
TWIVC6050 SCIS	REF PCO : GPS GLONASS Galileo F		H:0.100m / E:0.000m / N:0.000m	

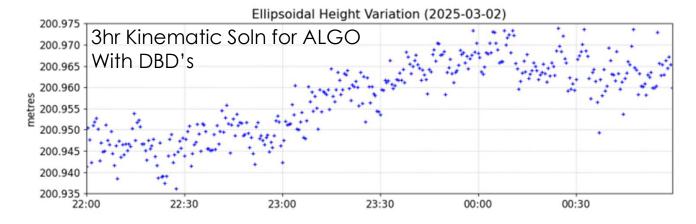

(APC = antenna phase center, ARP = antenna reference point; REF PCO = reference phase center offset) Estimated Position for DRAO00CAN R 20251310000 01D 30S MO.rnx


	Latitude (+n)	Longitude (+e)	Ell. Height	
NAD83(CSRS) (2010.0)1	49° 19' 21.41000"	-119° 37' 29.87534"	542.214 m	
SIG_PPP(95%)‡	0.002 m	0.001 m	0.005 m	
SIG_TOT(95%)‡	0.013 m	0.009 m	0.009 m	
A priori*	49° 19' 21.41016"	-119° 37' 29.87542"	542.224 m	
Estimated – A pric ri	-0.005 m	0.002 m	-0.010 m	

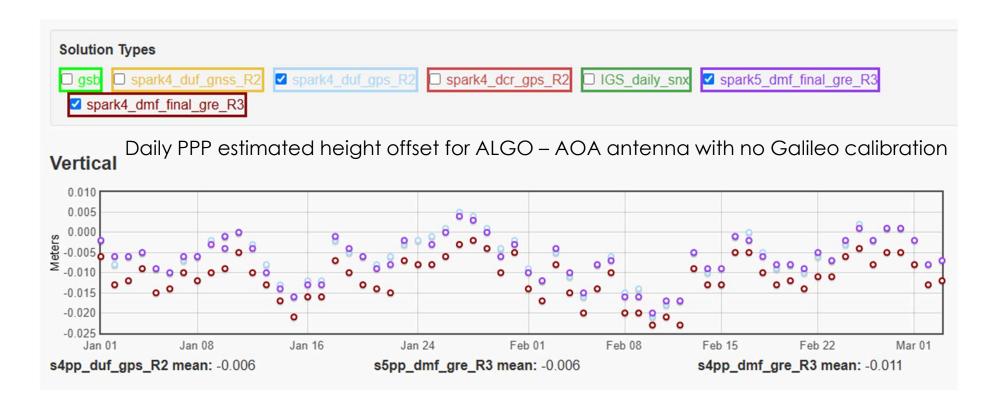

Updated APC to ARP block

Results – improved convergence





CSRS-PPP v5 improvement with Final products for datasets between 15 minutes and 12 hours

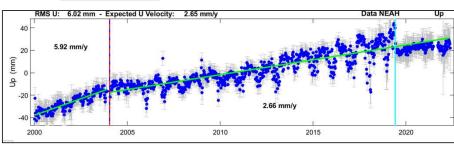

Results – Impact of applying DBD's in CSRS-PPP

Results – Impact of estimating Galileo PCO/PCV for an uncalibrated antenna (ALGO)

Future updates

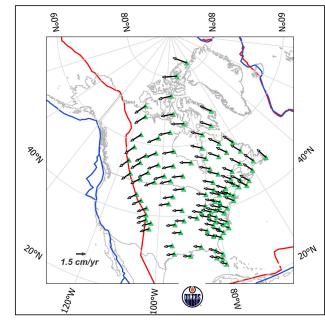
- ▶ Introduce IGS repro3 products from 1994 to 2022
 - ▶ Need to estimate GPS and Galileo satellite clocks and phase biases to support PPP-AR for 2021-01-01 to 2022-11-27


Start Date	ITRF Realization	Products Used	Orbits/Clocks	Phase Biases
1994-Mar-06	ITRF2014/IGSR3	IGS Repro3 GPS	GPS	None
2000-Jan-01	ITRF2014/IGSR3	IGS Repro3 GPS with BIA (PPP-AR)	GPS	GPS
2002-Jan-01	ITRF2014/IGSR3	IGS Repro3 GPS+GLO	GPS+GLO	GPS
2013-Jan-01	ITRF2014/IGSR3	IGS Repro3 GPS+GLO+GAL	GPS+GLO+GAL	GPS+GAL
2021-Jan-01	ITRF2014/IGSR3	IGS Repro3 extended GPS+GLO+GAL	GPS+GLO+GAL	None


- Replace CODE GLONASS and Galileo products for Rapids and Finals with NRCan products (GipsyX orbits with SPARKnet satellite clocks and phase biases)
- Add NRCan Ultra-rapid GPS/GLONASS/Galileo products

NATRF2022 Coordinates and Velocities have been Estimated

- CGS has completed reprocessing of all public ACS data
 - Used latest software & international standards
 - Generated weekly coordinate solutions
- Multi-year combinations completed
 - Discontinuities in coordinate time series modelled
 - Computed coordinates & velocities of public ACSs/RTK
 - Combination done at ITRF2020 Epoch 2020.0, transformed to NAD83(CSRS)v8.0
 - Preliminary solution for NATRF2022

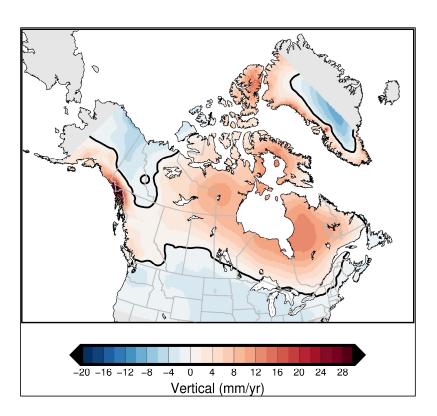


Position Discontinuity

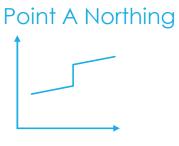
Euler Pole Parameters were estimated defining the Transformation from ITRF2020 to NATRF2022

- Collaboration between NGS and CGS has allowed EPPs to be estimated
 - ▶ A list of core stations were agreed upon to model North American plate motion
 - Located in stable part of NA
 - Stable monuments
 - > 2+ years of data
 - CGS/NGS responsible for modelling its stations' discontinuities
 - Each agency independently estimated values to validate results

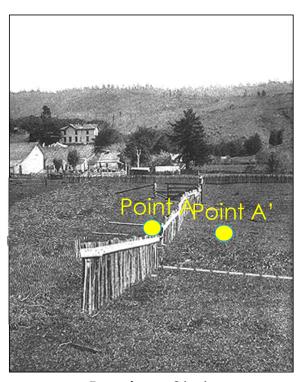
Desired rotations

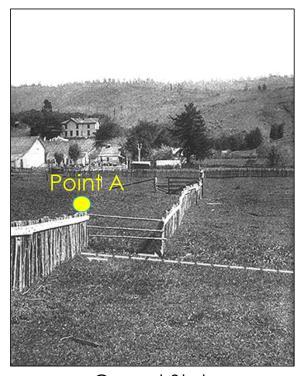

$$\mathbf{v}_{i}^{p} = \mathbf{\Omega}^{p} \times \mathbf{x}_{i} = \begin{bmatrix} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{bmatrix}^{p} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{i}$$

Beta values available


An Intraframe Deformation Model (IFDM) is used to capture residual motion not captured by the EPPs

- IFDM is currently a velocity grid in Canada
- It may evolve to include more sophisticated modelling (coordinate functions and GGXF to be discussed at a later time)
- Next presentation will look at the velocity model in more detail

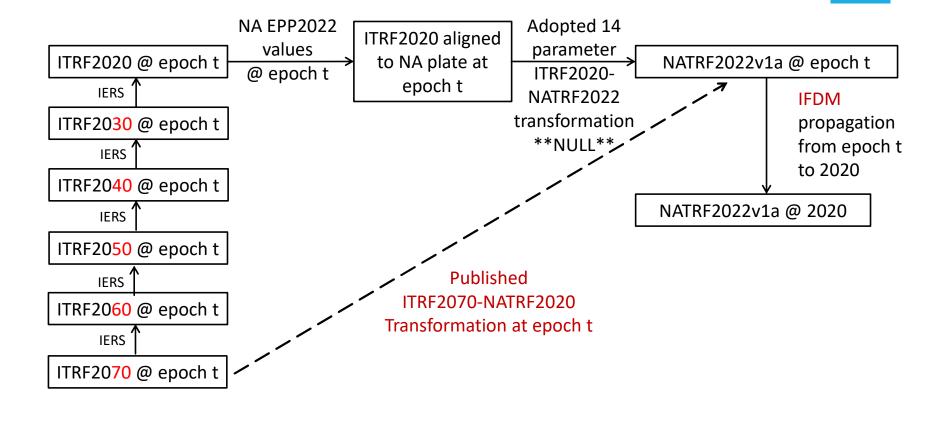



Coordinate Function Retracing of Position

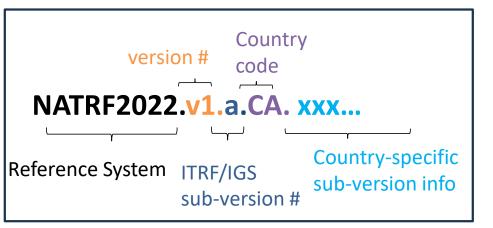
2010.0 2010.5 2010.0

Previous State

Current State


Using the current velocity alone, the current state would show the same fence location in previous state (Point A')

A coordinate function could be used to apply the Earthquake offset and recreate the actual previous fence location. Knowledge of the fault zone would be needed.


Example Progression of NATRF Updates

Incremental ITRF Transformations. (from IERS)

Geometric Reference Frame Version Naming

• Reference System name:

- Official reference system name
- Changes when the system definition changes . E.g., Euler pole parameters change, origin change...
- Fixed number of characters?

Reference frame version

- V1 upon rollout. ITRF2020
- V2 ITRF20XX
- Reference frame subversion e.g., a,b,c...
 - 'a' upon rollout
 - Follows annual changes to ITRF/IGS (which are to be aligned going forward).
 - ITRF2020-u2303
- Country code: Canada (CA), United States (US)
- Country specific sub version information: solution number, deformation model, projection information, geoid information...etc. Changes when geodetic network is expanded, minor coordinate revisions are made.

Next Steps

Medium Term:

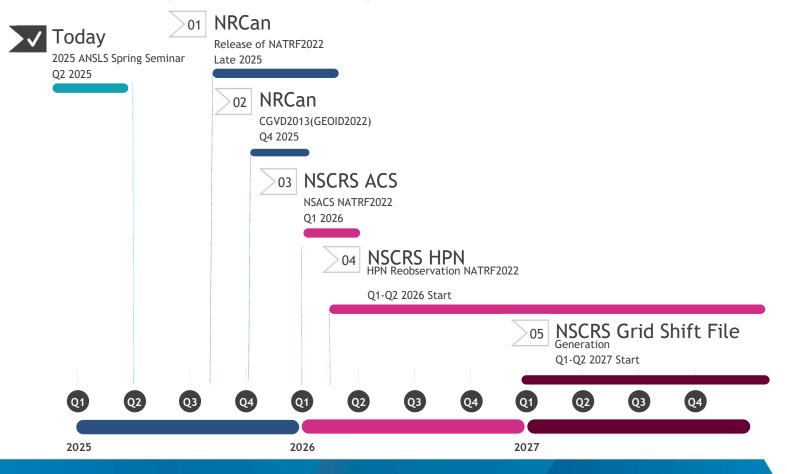
Combination to the end of 2024 that will serve as the foundation for NATRF2020 and NAD83(CSRS)v8.1

Publication of North America EPPs

Long Term:

Development of Coordinate Functions

Development of more complex IFDM



NATRF2022

NATRF 2022 – Nova Scotia Implementation

- Upgrades of NSACS receivers and antennas 2025 2029
- NRTK Correction software GEO++ (~mid of 2025 fiscal year)
- NATRF2022 NSACS coordinates as provided by NRCAN ~2025
- NATRF2022 access as soon as NSACS coordinates are updated
 - Staged roll out to full implementation
- HPN NATRF2022 as soon as NSACS coordinates are updated
- Tools for Coordinate Transformation NRCan

Nova Scotia NATRF2022 and CGVD2013(NAPGD22) Implementation Plan

Geo**NOVA**

Thank you

